วันอังคารที่ 20 มิถุนายน พ.ศ. 2560

หน้าแรก



โรงเรียนเทพลีลา


ผลการค้นหารูปภาพสำหรับ โรงเรียนเทพลีลา

วิชา  วิทยาศาสตร์  5 ว33101

ผลการค้นหารูปภาพสำหรับ ครูพิพัฒพงษ์ สาจันทร์

ครูผู้สอน  คุณครูพิพัฒน์พงษ์ สาจันทร์
  • ·         เวลาเรียน 2 คาบ/สัปดาห์
  • ·         จำนวนหน่วย 1 หน่วย
  • ·         ระดับชั้นมัธยมศึกษาปีที่6/3-6/6


เนื้อหา 
               
บทที่ 1 คลื่น 
               บทที่ 2 เสียง
               * บทที่ 3 คลื่นแม่เหล็กไฟฟ้า
               บทที่ 4 พลังงานนิวเคลียร์

เกณฑ์การให้คะแนน
·         คะแนนเก็บ 50 คะแนน
              * ชิ้นงาน  10 คะแนน
              * การบ้าน 20 คะแนน
              * สอบย่อย 20 คะแนน

↘↘↘  คะแนนกลางภาค 20 คะแนน
↘↘↘  คะแนนปลายภาค 30 คะแนน
                                                                                                               
ติดตามความเคลื่อนไหวได้ที่   https://www.youtube.com/user/pipatpongswp



วันเสาร์ที่ 17 มิถุนายน พ.ศ. 2560

พลังงานนิวเคลียร์

พลังงานนิวเคลียร์ เป็นพลังงานรูปแบบหนึ่ง ที่ได้จากปฏิกิริยานิวเคลียร์ นิวเคลียร์ เป็นคำคุณศัพท์ของคำว่า นิวเคลียส ซึ่งเป็นแก่นกลางของอะตอมธาตุ ซึ่งประกอบด้วยอนุภาคโปรตอน และนิวตรอน ซึ่งยึดกันได้ด้วยแรงของอนุภาคไพออน
พลังงานนิวเคลียร์



ชนิดของพลังงานนิวเคลียร์ 
พลังงานที่ถูกปล่อยออกมาจากแร่กัมมันตภาพรังสี
จะปล่อยออกมาเมื่อมีการแยกหรือการรวม หรือเปลี่ยนแปลงของนิวเคลียสภายในอะตอม ซึ่งเรียกว่า ปฏิกิริยานิวเคลียร์ แบ่งได้เป็น 4 ชนิด คือ
1.ปฏิกิริยาฟิชชัน
(Fission) เป็นพลังงานที่เกิดจากการแตกตัว หรือแยกตัวของธาตุหนัก เช่น ยูเรเนียม พลูโตเนียม เมื่อถูกชนด้วยอนุภาคนิวตรอน เช่น ระเบิดปรมาณู
2.ปฏิกิริยาฟิวชัน (Fussion) เป็นพลังงานที่เกิดจากการรวมตัวของธาตุเบา
เช่น การรวมตัวของธาตุ H กับ He บนดวงอาทิตย์
3.ปฏิกิริยาที่เกิดจากการสลายตัวของธาตุกัมมันตรังสี
(Redioactivity) ได้แก่ ยูเรเนียม เรเดียม พลูโตเนียม ฯลฯ ธาตุเหล่านี้จะปลดปล่อยรังสีและอนุภาคต่าง ๆ ออกมา เช่น อนุภาคแอลฟา อนุภาคเบตา รังสีแกมมา และอนุภาคนิวตรอน
4.ปฏิกิริยาที่ได้จากเครื่องเร่งอนุภาคที่มีประจุ
(Particale Accelerrator) เช่น โปรตอนอิเล็กตรอน ดิวทีเรียม และอัลฟา

รูปแบบของพลังงานนิวเคลียร์  
สามารถถูกจัดแบ่งออกได้เป็น3 ประเภท ตามลักษณะวิธีการปลดปล่อยพลังงานออกมาคือ
1.พลังงานนิวเคลียร์ที่ถูกปลดปล่อยออกมาในลักษณะเฉียบพลัน  เป็นปฏิกิริยานิวเคลียร์ที่ควบคุมไม่ได้  (Uncontrolled nuclear reactions) พลังงานของปฏิกิริยาจะเพิ่มสูงขึ้นอย่างรวดเร็ว เป็นเหตุให้เกิดการระเบิด (Nuclear explosion) สิ่งประดิษฐ์ที่ใช้หลักการเช่นนี้ได้แก่ ระเบิดปรมาณู (Atomic bomb) หรือระเบิดไฮโดรเจน และหัวรบนิวเคลียร์แบบต่าง ๆ (ของอเมริกาเรียกว่าจรวด Pershing, ของรัสเซียเรียกว่า จรวด SS-20) 
2.พลังงานจากปฏิกิริยานิวเคลียร์ ซึ่งควบคุมได้ ในปัจจุบันปฏิกิริยานิวเคลียร์ซึ่งควบคุมได้ตลอดเวลา (Controlled nuclear reaction) ซึ่งมนุษย์ได้นำเอาหลักการมาพัฒนาขึ้นจนถึงขั้นที่นำมาใช้ประโยชน์ในระดับขั้นการค้าหรือบริการสาธารณูปโภคได้แล้ว มีอยู่แบบเดียว  คือ  ปฏิกิริยาฟิชชันห่วงโซ่ของไอโซโทปยูเรเนียม -235  และของไอโซโทปที่แตกตัวไ  ด้ (Fissile isotopes)  อื่น ๆ  อีก 2 ชนิด   (ยูเรเนียม -233 และพลูโตเนียม -239) สิ่งประดิษฐ์ซึ่งทำงานโดยหลักการของปฏิกิริยาฟิชชันห่วงโซ่ของเชื้อเพลิงนิวเคลียร์ ซึ่งมีที่ใช้กันอย่างแพร่หลายอยู่ในปัจจุบัน ได้แก่ เครื่องปฏิกรณ์นิวเคลียร์หรือเครื่องปฏิกรณ์ปรมาณู (Nuclear reactors) 
3.พลังงานนิวเคลียร์จากสารกัมมันตรังสี  สารกัมมันตรังสีหรือสารรังสี (Radioactive material)  คือสารที่องค์ประกอบส่วนหนึ่งมีลักษณะเป็นไอโซโทปที่มีโครงสร้างปรมาณูไม่คงตัว (Unstable isotipe) และจะสลายตัวโดยการปลดปล่อยพลังงานส่วนเกินออกมาในรูปของรังสีแอลฟา รังสีบีตา รังสีแกมมา หรือรังสีเอกซ์รูปใดรูปหนึ่ง หรือมากกว่าหนึ่งรูปพร้อม ๆ กัน ไอโซโทปที่มีคุณสมบัติดังกล่าวนี้เรียกว่า ไอโซโทปกัมมันตรังสี หรือไอโซโทปรังสี (Radioisotope)
อนุภาคมูลฐานของอะตอม
1. สัญลักษณ์นิวเคลียร์ คือ สัญลักษณ์ที่เขียนแสดงเลขมวลและเลขอะตอม

ผลการค้นหารูปภาพสำหรับ สัญลักษณ์ของธาตุ




    เลขอะตอม แสดงถึงจำนวนโปรตอนในอะตอม มีค่าเท่ากับจำนวนอิเล็กตรอน

    เลขมวล แสดงถึงผลรวมของจำนวนโปรตอนกับนิวตรอน

2. ไอโซโทป ไอโซโทน และไอโซบาร์

      1. ไอโซโทป คือ ธาตุที่มีเลขอะตอมเหมือนกัน เลขมวลต่างกัน หรือ ธาตุที่มีโปรตอนเท่า แต่ นิวตรอนต่าง
      2. ไอโซโทน คือ ธาตุที่มีนิวตรอนเท่า แต่ โปรตอนต่าง
      3. ไอโซบาร์ คือ ธาตุที่มีเลขมวลเท่า แต่ เลขอะตอมต่าง

3. ธาตุกัมมันตรังสี
     ธาุกัมมันตรังสี คือ ธาตุที่มีสมบัติในการแผ่รังสี
    กัมมันตภาพรังสี คือ ปรากฏการณ์ที่ธาตุแผ่รังสีได้อย่างต่อเนื่อง



หมายเหตุ ถ้าเปรียบเทียบอำนาจทะลุทะลวง แอลฟา บีตา แกมมา จากน้อยไปมากจะเป็น แอลฟา บีตา แกมมา



ผลการค้นหารูปภาพสำหรับ โรงไฟฟ้านิวเคลียร์
                                                      
                                                 

โรงไฟฟ้านิวเคลียร์  คือ โรงไฟฟ้าพลังความร้อนชนิดหนึ่งใช้ความร้อนทำให้น้ำเดือดกลายเป็นไอน้ำไปหมุนกังหัน เพื่อหมุนเครื่องกำเนิดไฟฟ้าทำการผลิตไฟฟ้า ความแตกต่างอยู่ที่แหล่งกำเนิดความร้อนซึ่งได้มาจากปฏิกิริยานิวเคลียร์แทนที่จะเป็นการเผาไหม้ของเชื้อเพลิง น้ำมัน ถ่านหิน หรือก๊าซธรรมชาติ
  
เชื้อเพลิง  ใช้แร่ยูเรเนียมเป็นเชื้อเพลิงแต่ต้องผ่านกระบวนการแปลงสภาพ ให้เป็นเม็ดรูปทรงกระบอกขนาดกว้าง และสูง 1x1 เซนติเมตร บรรจุเรียงกันไว้ในแท่งแล้วมัดรวมกันไว้เป็นมัด ๆ เสียก่อน จากนั้นจึงจะนำไปใช้งานได้โดยใส่ไว้ภาชนะที่เรียกว่า เตาปฏิกรณ์เพื่อให้เกิดปฏิกิริยานิวเคลียร์และความร้อน การใส่เชื้อเพลิงอาจจะกระทำเป็นรายวันหรือปีละครั้งซึ่งขึ้นอยู่กับประเภทของโรงไฟฟ้า โรงไฟฟ้านิวเคลียร์ขนาดใหญ่ใช้แร่ยูเรเนียมดิบประมาณปีละ 200 ตัน (แปลงสภาพแล้วเหลือเพียง 30 ตัน) ภูมิภาคที่มีแร่ยูเรเนียมเป็นจำนวนมาก ได้แก่ อเมริกาเหนือ อัฟริกา ออสเตรเลีย และยุโรป สำหรับในเอเชียก็มีรวมทั้งโลกมีแร่ยูเรเนียมประมาณ 14 ล้านตัน ซึ่งมีมากพอที่จะใช้อีกเป็นร้อย ๆ ปี

ผลกระทบสิ่งแวดล้อม โรงไฟฟ้านิวเคลียร์มีผลกระทบต่อสิ่งแวดล้อมน้อย กล่าวคือ
    - ไม่มีเสียงดังเลย
    - ไม่มีเขม่า ควัน หรือก๊าซต่าง ๆ ที่จะทำให้อากาศเสีย เนื่องจากไม่มีการเผาไหม้
    - ไม่มีก๊าซที่จะทำให้เกิดฝนกรดและภาวะเรือนกระจก
    - น้ำที่ปล่อยออกมาจากโรงไฟฟ้านิวเคลียร์ไม่มีรังสี และมีสภาพเหมือนกับโรงไฟฟ้าพลังความร้อนทั่ว ๆ ไป
    - มีแผนและมีมาตรการป้องกันผลกระทบต่อสิ่งแวดล้อมที่อาจเกิดขึ้นตลอดเวลา

การใช้ประโยชน์จากพลังงานนิวเคลียร์ด้านอื่น
    - ด้านกำลัง พลังงานนิวเคลียร์ที่ปล่อยออกมาในรูปความร้อนสามารถนำไปใช้ในการขับเคลื่อน ยานอวกาศ เรือเดินสมุทรขนาดใหญ่ ผลิตกระแสไฟฟ้า และอื่น ๆ
    - ด้านอุตสาหกรรม ใช้ในการเหนี่ยวนำให้เกิดการเปลี่ยนแปลงทางเคมี ทางกายภาพและชีวภาพ ในสารตัวกลาง เช่น กำจัดจุลินทรีย์บางชนิดในอาหารและขยะ การเปลี่ยนแปลงสีของอัญมณีหรือเครื่องประดับ เป็นต้น นอกจากนี้ยังสามารถใช้ตรวจสอบและรักษาด้านระบบควบคุมในกระบวนการผลิตในโรงงานอุตสาหกรรม
    - ด้านการเกษตรใช้ในการเปลี่ยนแปลงพันธุ์พืช ปรับปรุงและขยายพันธุ์พืช และกำจัดแมลงศัตรูพืช
    - ด้านการแพทย์ ใช้ในการตรวจรักษาและวินิจฉัยโรค เช่น การเอ๊กซเรย์ การรักษาโรคมะเร็ง เป็นต้น


สามารถหาความรู้เพิ่มเติมได้ที่  ↘↘↘↘




คลื่นแม่เหล็กไฟฟ้า


คลื่นแม่เหล็กไฟฟ้า


          ธรรมชาติของ “แสง” แสดงความประพฤติเป็นทั้ง “คลื่น” และ “อนุภาค” เมื่อเรากล่าวถึงแสงในคุณสมบัติความเป็นคลื่น เราเรียกว่า “คลื่นแม่เหล็กไฟฟ้า” (Electromagnetic waves) ซึ่งประกอบด้วยสนามแม่เหล็กและสนามไฟฟ้าทำมุมตั้งฉาก และเคลื่อนที่ไปในอวกาศด้วยความเร็ว 300,000,000 เมตร/วินาที เมื่อเรากล่าวถึงแสงในคุณสมบัติของอนุภาค
เราเรียกว่า “โฟตอน” (Photon) เป็นอนุภาคที่ไม่มีมวล แต่เป็นพลังงาน


ภาพที่ 1  คุณสมบัติของคลื่นแม่เหล็กไฟฟ้า


 ความยาวคลื่น = ความเร็วแสง / ความถี่
ความยาวคลื่น ( ) = ระยะห่างระหว่างยอดคลื่น มีหน่วยเป็นเมตร (m)
ความถี่ (f) = จำนวนคลื่นที่เคลื่อนที่ผ่านจุดที่กำหนด ในระยะเวลา 1 วินาที มีหน่วยเป็นเฮิรทซ์ (Hz)
ความเร็วแสง (c) = 300,000,000 เมตร/วินาที (m/s)


ประเภทของคลื่นแม่เหล็กไฟฟ้า 
  

ภาพที่ 2  ประเภทของคลื่นแม่เหล็กไฟฟ้า


คลื่นแม่เหล็กไฟฟ้าเรียงลำดับตามความยาวคลื่นได้ดังนี้

          
รังสีแกมมา (Gamma ray) เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นน้อยกว่า 0.01 นาโนเมตร โฟตอนของรังสีแกมมามีพลังงานสูงมาก กำเนิดจากแหล่งพลังงานนิวเคลียร์ เช่น ดาวระเบิด หรือ ระเบิดปรมาณู เป็นอันตรายมากต่อสิ่งมีชีวิต

          
รังสีเอ็กซ์ (X-ray) มีความยาวคลื่น 0.01 - 1 นาโนเมตร มีแหล่งกำเนิดในธรรมชาติมาจากดวงอาทิตย์ เราใช้รังสีเอ็กซ์ในทางการแพทย์ เพื่อส่องผ่านเซลล์เนื้อเยื่อ แต่ถ้าได้ร่างกายได้รับรังสีนี้มากๆ ก็จะเป็นอันตราย

          
 รังสีอุลตราไวโอเล็ต (Ultraviolet radiation) มีความยาวคลื่น 1 - 400 นาโนเมตร รังสีอุลตราไวโอเล็ตมีอยู่ในแสงอาทิตย์ เป็นประโยชน์ต่อร่างกาย แต่หากได้รับมากเกินไปก็จะทำให้ผิวไหม้ และอาจทำให้เกิดมะเร็งผิวหนัง 

          
แสงที่ตามองเห็น (Visible light) มีความยาวคลื่น 400 – 700 นาโนเมตร พลังงานที่แผ่ออกมาจากดวงอาทิตย์ ส่วนมากเป็นรังสีในช่วงนี้ แสงแดดเป็นแหล่งพลังงานที่สำคัญของโลก และยังช่วยในการสังเคราะห์แสงของพืช

ผลการค้นหารูปภาพสำหรับ สเปกตรัมของแสง

    
      รังสีอินฟราเรด (Infrared radiation) มีความยาวคลื่น 700 นาโนเมตร – 1 มิลลิเมตร โลกและสิ่งชีวิตแผ่รังสีอินฟราเรดออกมา ก๊าซเรือนกระจก เช่น คาร์บอนไดออกไซด์ และไอน้ำ ในบรรยากาศดูดซับรังสีนี้ไว้ ทำให้โลกมีความอบอุ่น เหมาะกับการดำรงชีวิต 

          
 คลื่นไมโครเวฟ (Microwave) มีความยาวคลื่น 1 มิลลิเมตร – 10 เซนติเมตร ใช้ประโยชน์ในด้านโทรคมนาคมระยะไกล นอกจากนั้นยังนำมาประยุกต์สร้างพลังงานในเตาอบอาหาร

          
 คลื่นวิทยุ (Radio wave) เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นมากที่สุด คลื่นวิทยุสามารถเดินทางผ่านชั้นบรรยากาศได้ จึงถูกนำมาใช้ประโยชน์ในด้านการสื่อสาร โทรคมนาคม


สเปกตรัมของคลื่นแม่เหล็กไฟฟ้า



คลื่นแม่เหล็กไฟฟ้ามีความถี่ต่อเนื่องกันเป็นช่วงกว้างเราเรียกช่วงความถี่เหล่านี้ว่า "สเปกตรัมคลื่นแม่เหล็กไฟฟ้า" และมีชื่อเรียกช่วงต่าง ๆ ของความถี่ต่างกันตามแหล่งกำเนิดและวิธีการตรวจวัดคลื่น


สเปกตรัมคลื่นแม่เหล็กไฟฟ้า


คลื่นแม่เหล็กไฟฟ้าชนิดต่าง ๆในสเปกตรัมมีสมบัติที่สำคัญเหมือนกันคือ เคลื่อนที่ไปด้วยความเร็วเท่ากับแสงและมีพลังงานส่งผ่านไปพร้อมกับคลื่น 


สิ่งที่ควรรู้
    1. ถ้าเรียงลำดับสเปกตรัมของคลื่นแม่เหล็กไฟฟ้าจากความยาวคลื่นจากมากไปน้อย จะได้ วิทยุ ไมโครเวฟ อินฟาเรด แสง อัลตราไวโอเลต รังสีเอ็กซ์ รังสีแกมม่า
    2. ความเร็ซในการเคลื่อนที่ของคลื่นแม่เหล็กไฟฟ้าในสุญญากาศ มีค่าเท่ากับ 3x10 กำลัง 8เมตร/วินาที
    3. แสง มีความยาวคลื่น 400 nm - 700 nm เรียงจากความยาวคลื่นจากน้อยไปมาก คือ ม่วง คราม น้ำเงิน เขียว เหลือง แสด แดง





↓↓↓↓  สามารถหาความรู้เพิ่มเติมได้ที่ ↓↓↓↓



 













 ข้อมูลจาก  http://mammatheng.blogspot.com/p/3.html


เสียง





       เสียง   เป็นคลื่นเชิงกลที่เกิดจากการสั่นสะเทือนของวัตถุ เมื่อวัตถุสั่นสะเทือน ก็จะทำให้เกิดการอัดตัวและขยายตัวของคลื่นเสียง และถูกส่งผ่านตัวกลาง เช่น อากาศ ไปยังหู แต่เสียงสามารถเดินทางผ่านสสารในสถานะแก๊ส ของเหลว และของแข็งก็ได้ แต่ไม่สามารถเดินทางผ่านสุญญากาศได้


                                     

                              

การเกิดเสียง

เสียง เริ่มเกิดขึ้นเมื่อวัตถุหรือแหล่งกำเนิดเสียงมีการสั่นสะเทือนส่งผลต่อการเคลื่อนที่ของโมเลกุลของอากาศที่อยู่โดยรอบ กล่าวคือโมเลกกุลของอากาศเหล่านี้จะเคลื่อนที่จากตำแหน่งเดิมไปชนกับโมเลกุลที่อยู่ถัดไป ก่อให้เกิดการถ่ายโอนโมเมนตัมจากโมเลกุลที่มีการเคลื่อนที่ให้กับโมเลกุลที่อยู่ในสภาวะปกติ จากนั้นโมเลกุลที่ชนกันนี้จะแยกออกจากกันโดยโมเลกุลที่เคลื่อนที่มาจะถูกดึงกลับไปยังตำแหน่งเดิมด้วยแรงปฏิกิริยาและโมเลกุลที่ได้รับการถ่ายโอนพลังงานจะเคลื่อนที่ไปชนกับโมเลกุลที่อยู่ถัดไป ปรากฏการณ์นี้จะเกิดขึ้นสลับกันไปมาได้เมื่อสื่อกลาง (ในที่นี้คืออากาศ) มีคุณสมบัติของความยืดหยุ่น การเคลื่อนที่ของโมเลกุลอากาศนี้จึงเกิดเป็นคลื่นเสียง

คุณลักษณะของเสียง


คุณลักษณะเฉพาะของเสียง ได้แก่ ความยาวช่วงคลื่น แอมปลิจูด และความเร็ว
เสียงแต่ละเสียงมีความแตกต่างกัน เสียงสูง-เสียงต่ำ, เสียงดัง-เสียงเบา, หรือคุณภาพของเสียงลักษณะต่างๆ ทั้งนี้ขึ้นอยู่กับแหล่งกำเนิดเสียง และจำนวนรอบต่อวินาทีของการสั่นสะเทือน

ความถี่

ระดับเสียง (pitch) หมายถึง เสียงสูงเสียงต่ำ สิ่งที่ทำให้เสียงแต่ละเสียงสูงต่ำแตกต่างกันนั้น ขึ้นอยู่กับความเร็วในการสั่นสะเทือนของวัตถุ วัตถุที่สั่นเร็วเสียงจะสูงกว่าวัตถุที่สั่นช้า โดยจะมีหน่วยวัดความถี่ของการสั่นสะเทือนต่อวินาที เช่น 60 รอบต่อวินาที, 2,000 รอบต่อวินาที เป็นต้น และนอกจาก วัตถุที่มีความถี่ในการสั่นสะเทือนมากกว่า จะมีเสียงที่สูงกว่าแล้ว หากความถี่มากขึ้นเท่าตัว ก็จะมีระดับเสียงสูงขึ้นเท่ากับ ออกเตฟ (octave) ภาษาไทยเรียกว่า ช่วงคู่แปด

ความยาวช่วงคลื่น

ความยาวช่วงคลื่น (wavelength) หมายถึง ระยะทางระหว่างยอดคลื่นสองยอดที่ติดกันซึ่งเกิดขึ้นระหว่างการอัดตัวของคลื่นเสียง (คล้ายคลึงกับยอดคลื่นในทะเล) ยิ่งความยาวช่วงคลื่นมีมาก ความถึ่ของเสียง (ระดับเสียง) ยิ่งต่ำลง

ความดันเสียง (sound pressure) 

หมายถึง ค่าความดันของคลื่นเสียงที่เปลี่ยนแปลงไปจากความดันบรรยากาศปกติ ซึ่งค่าความดันที่เปลี่ยนแปลงมากที่สุด คือ    ค่าความสูงคลื่นหรือแอมปลิจูด   การตอบสนองของหูต่อความดันเสียงไม่ได้มีลักษณะเป็นเส้นตรง แต่มีความสัมพันธ์นลักษณะของลอกาลิทึม (Logarithm) ดังนั้น ค่าระดับความดันเสียง ที่อ่านได้จากการตรวจวัดโดยเครื่องวัดเสียงนั้น เป็นค่าทีได้จากการเปรียบเทียบกับความดันเสียงอ้างอิงแล้ว มีหน่วยวัดเป็น เดชิเบล (decibel : dB)

แอมปลิจูด

แอมปลิจูด (amplitude) หมายถึง ความสูงระหว่างยอดคลื่นและท้องคลื่นของคลื่นเสียง ที่แสดงถึงความเข้มของเสียง (Intensity) หรือความดังของเสียง (Loudness) ยิ่งแอมปลิจูดมีค่ามาก ความเข้มหรือความดังของเสียงก็ยิ่งเพิ่มขึ้น


ความถี่ อัตราเร็ว และอัตราเร็วเสียงในอากาศ

1. ความถี่ของเสียง ใช้บอกระดับเสียง ความถี่สูงจะมีระดับเสียงสูงและแหลม ถ้ามีความถี่ต่ำจะมีระดับเสียงต่ำและทุ้ม
    -  มนุษย์ทั่วไปได้ยินเสียงในช่วงความถี่ 20 - 20000 เฮิรตซ์
    -  ความถี่ต่ำกว่า 20 เฮิรตซ์ เรียกว่า อินฟาโซนิก เช่น การสื่อสารของช้าง
    -  ความถี่สูงกว่า 20000 เฮริตซ์ เรียกว่า อัลตราโซนิค เช่น การหาอาหารของค้างคาว โลมา วาฬ

2. อัตราเร็วของเสียง
 ขึ้นอยู่กับสภาพตัวกลาง เช่น อุณหภูมิ ความหนาแน่น ความยืดหยุ่น เป็นต้น อัตราเร็วเสียงที่เคลื่อนที่ผ่านตัวกลางที่มีอุณหภูมิสู.จะมีค่ามากกว่าตัวกลางที่มีอุณภูมิต่ำ

3. อัตราเร็วเสียงในอากาศ
 จะแปรผันตรงกับรากที่สองของอุณภูมิในหน่วยเคลวิน
    -  อุณหภูมิมาก อัตราเร็วมาก
    -  อุณภูมิน้อย อัตราเร็วน้อย
    -  ขณะอุณภูมิ + องศาเซลเซียส อัตราเร็วเสียงจะมีค่าประมาณ 331 เมตร/วินาที


 

สูตรนี้จะให้ค่าใกล้เคียงความจริง เมื่ออุณภูมิมีค่าไม่เกิน 45 องศาเซลเซียส

คุณสมบัติของเสียง

1. การสะท้อน  เมื่อคลื่นเสียงตกกระผิวรอยต่อระหว่างตัวกลาง หรือตัวกลางขนิดเดียวกันแต่อุณหภูมิต่างกัน หรือตกกระทบสิ่งกีดขวางที่มีขนาดเท่ากันกับหรือโตกว่าความยาวคลื่นเสียงนั้น จะเกิดการสะท้อนเสียง

 

1. เมื่อคลื่นเสียงตกกระทบ ความถี่ ความเร็ว ความยาวคลื่น และแอมพลิจูด จะสะท้อนออกของเดิม
2. การเคลื่อนที่จากตัวกลางหนาแน่นน้อย ไป มาก การกระจัดที่สะท้อนมีเฟสตรงข้าม
3. การเคลื่อนที่จากตัวกลางหนาแน่นมาก ไป น้อย การกระจัดที่สะท้อนจะมีเฟสคงเดิม
4. ถ้าเสียงที่สะท้อนกลับมาสู๋หูของเราช้ากว่าเสียงที่ตะโกนออกไปเกินกว่า 0.1 วินาที หูของเราจะสมารถแยกเสียงตะโกนและเสียงที่สะท้อนกลับมาได้ เราเรียกว่า การเกิดเสียงก้อง
5. จากความรู้การสะท้อนของเสียง นำไปสร้างเครื่อวโซนาร์ ใช้หาความลึกของทะเล หาฝูงปลาในทะเล สร้างเครื่องอัลตราซาวด์ 



2. การหักเห  คลื่นเสียงเมื่อเดินทางผ่านตัวกลางที่มีความหนาแน่นแตกต่างกันจะเกิดการเปลี่ยนแปลงทิศทางความเร็วและความยาวคลื่น แต่ความถี่คลื่นยังคงที่ กล่าวคือเมื่อเสียงเคลื่อนที่จากตัวกลางที่มีความหนาแน่นน้อย (อากาศ) เข้าสู่ตัวกลางที่มีความหนาแน่นมากกว่า(น้ำ)  เสียงจะหักเหออกจากเส้นตั้งฉาก หลักการนี้ใช้อธิบาย การเห็นฟ้าแลบ แต่ไม่ได้ยินเสียงฟ้าร้อง เพราะเมื่อเกิดฟ้าแลบ แม้จะมีเสียงเกิดขึ้นแต่เราไม่ได้ยินเสียง ทั้งนี้เพราะอากาศใกล้พื้นดินมีอุณหภูมิสูงกว่าอากาศเบื้องบน ทำให้การเคลื่อนที่ของเสียงเคลื่อนที่ได้ในอัตราที่ต่างกัน คือ เคลื่อนที่ในอากาศที่มี อุณหภูมิสูงได้เร็วกว่าในอากาศที่มีอุณหภูมิต่ำ ดังนั้น เสียงจึงเคลื่อนที่เบนขึ้นทีละน้อยๆ จนข้ามหัวเราไป จึงทำให้ไม่ได้ยินเสียงฟ้าร้อง
 

1. บริเวณที่มีอุณภูมิสูง เสียงจะเคลื่อนที่ด้วยอัตราเร็วมากกว่าบริเวณที่มีอุณภูมิต่ำ
2. เสียงเคลื่อนที่จากบริเวณที่มีอุณภูมิสูงไปสู่บริเวณที่มีอุณภูมิต่ำ คลื่นเสียงจะหักเหเข้าเส้นแนวฉาก
 3. เสียงเคลื่อนที่จากบริเวณที่มีอุณภูมิต่ำไปสู่บริเวณที่มีอุณภูมิสูงกว่า เสียงจะหักเหออกจาเส้นแนวฉาก
4. ในเวลากลางวันพื้นโลกจะมีอุณภูมิสูงกว่าอุณหภูมิที่ระดับสูงจากพื้นโลกขึ้นไปทำให้เสียงหักเหขึ้นสู่ที่สูง ส่วนในเวลากลางคืนอุณหภูมิที่พื้นโลกจะต่ำกว่าอุณภูมิที่ระดับสูงกว่าพื้นโลกทำให้เสียงหักเหลงสู่พื้น


3. การแทรกสอด  ถ้าแหล่งกำเนิดเสียง 2 แหล่ง ที่มีแอมพลิจูด และความถี่เท่ากัน ซึ่งมีเฟสตรงกันหรือต่างกันคงตัว เคลื่อนที่มาซ้อมทับกัน แล้วทำให้เกิดจุดปฏิบัพ (เสียงดัง) และจุดบัพ (เสียงค่อย) สลับกัน





4. การเลี้ยวเบน นอกจากการหักเหของเสียงที่เกิดขึ้น เมื่อผ่านตัวกลางต่างชนิดกันแล้วยังมีการเลี้ยวเบนได้ การเลี้ยวเบนของเสียงมักจะเกิดพร้อมกับการสะท้อนของเสียง เสียงที่เลี้ยวเบน จะได้ยินค่อยกว่าเดิม เพราะพลังงานของเสียงลดลง   ในชีวิตประจำวันที่เราพบได้อย่างเสมออย่างหนึ่งคือการได้ยินเสียงของผู้อื่นได้โดยไม่เห็นตัวผู้พูด เช่น ผู้พูดอยู่คนละด้านของมุมตึก ปรากฏการณ์ดังนี้ แสดงว่าเสียงสามารถเลี้ยวเบนได้  การอธิบายปรากฏการณ์นี้สามารถจะกระทำได้โดยใช้หลักการของฮอยเกนท์อธิบายว่า ทุกๆจุดบนหน้าคลื่นสามารถทำหน้าที่เป็นต้นกำเนิดคลื่นอันใหม่ได้  ดังนั้นอนุภาคของอากาศที่ทำหน้าที่ส่งผ่านคลื่นเสียงตรงมุมตึกย่อมเกิดการสั่น ทำหน้าที่เหมือนต้นกำเนิดเสียงใหม่ ส่งคลื่นเสียงไปยังผู้ฟังได้ 



สรุป

เสียงเกิดจากการสั่นของแหล่งกำเนิด มีลักษณะสำคัญดังนี้
  • ·   เสียงเป็นคลื่นชนิดหนึ่ง เพราะสามารถแสดงสมบัติการสะท้อน การหักเห การแทรกสอดและการเลี้ยวเบนได้
  • ·   เสียงเป็นคลื่นกล ตามยาวเพราะต้องอาศัยตัวกลางในการเคลื่อนที่ และอนุภาคตัวกลางสั่นขนานกับทิศการเคลื่อนที่ของคลื่น
  • ·  คลื่นเสียงเคลื่อนที่จากแหล่งกำเนิดไปถึงผู้ฟังได้ เกิดจากการสั่นของตัวกลาง
  •     โมเลกุลของอากาศในบริเวณที่เป็นส่วนอัดจะมีจำนวนมากกว่าเดิม ทำให้ความดันของอากาศที่บริเวณส่วนอัดมีค่าเพิ่มขึ้น
  •      โมเลกุลของอากาศในบริเวณที่เป็นส่วนขยายจะมีจำนวนน้อยกว่าเดิม ทำให้ความดันของอากาศที่บริเวณส่วนขยายมีค่าลดลง




สิ่งที่ควรรู้
1. เสียงค่อยที่สุดที่มนุษย์สามารถได้ยินมีความเข้มเสียง 10 กำลัง-12 วัตต์ต่อตารางเมตร
2. เสียงดังที่สุดที่มนุษย์ปกติสามารถทนฟังได้ โดยไม่เป็นอันตราย มีความเข้มเสียงเป็น 1 วัตต์ต่อตารางเมตร
3. ระดับความเข้มเสียง คือ ปริมาณที่ใช้บอกความดังเสียง โดยเทียวความเข้มเสียงที่ต้องการวัด กับความเข้มเสียงที่ค่อยที่สุดที่คนปกติได้ยิน
โดย คือความเข้มของเสียง มีหน่วยเป็นเดซิเบล
I คือความเข้มของเสียง
I0 คือความเข้มของเสียงต่ำสุดที่มนุษย์จะได้ยิน คือ 10-12 วัตต์/ตารางเมตร

4. ปรากฎการณ์ดอปเพลอร์ และคลื่นกระแทก

    ปรากฎการณ์ดอปเพลอร์ของเสียง คือ ผู้ฟังได้ยินเสียงที่มีความถี่เปลี่ยนไปจากความถี่ของแหล่งกำเนิดเสียง
    คลื่นกระแทก คือ หน้าคลื่นที่เคลื่อนที่มาเสริมกันในลักษณะที่เป็นคลื่นวงกลมซ้อนเรียงกันไป แหล่งกำเนิดที่เคลื่อนที่ด้วยความเร็วมากกว่าความเร็วของคลื่นในตัวกลาง

 
    a. อัตราเร็วแหล่งกำเนิด น้อยกว่า อัตราเร็วของเสียง
    b. อัตราเร็วแหล่งกำเนิด เท่ากับ อัตราเร็วเสียง
    c. อัตราเร็วแหล่งกำเนิด มากกว่า อัตราเร็วเสียง

5. คุณภาพเสียงและเสียงดนตรี แหล่งกำเนิดเสียงต่างๆขณะสั่น จะให้เสียงซึ่งมี่ความถี่มูลฐานและฮาร์มอนิกต่างๆ ออกมาพร้อมกันเสมอ แต่จำนวนฮาร์มอนิกและความเข้มเสียงจะแตกต่างกันไป จึงจะทำให้ลักษณะของคลื่นเสียงแตกต่างกันสำหรับแต่ละแหล่งกำเนิดที่ต่างกัน โดยจะมีลักษณะเฉพาะตัวที่ต่างกัน








↘↘↘↘↘↘↘  สามารถหาความรู้เพิ่มเติมได้ที่

       

                                   


 






ขอบขอบคุณข้อมูลจาก

https://th.wikipedia.org/wiki/B9%80%E0%B8%AA%E0%B8%B5%E0%B8%A2%E0%B8%87
http://mammatheng.blogspot.com/p/2.html

หน้าแรก

โรงเรียนเทพลีลา วิชา  วิทยาศาสตร์  5 ว33101 ครูผู้สอน  คุณครูพิพัฒน์พงษ์ สาจันทร์ ·          เวลาเรียน 2 คาบ/สั...